Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications.
نویسندگان
چکیده
The transsynaptic retrograde transport of the pseudorabies virus Bartha (PRV-Bartha) strain has become an important neuroanatomical tract-tracing technique. Recently, dual viral transneuronal labeling has been introduced by employing recombinant strains of PRV-Bartha engineered to express different reporter proteins. Dual viral transsynaptic tracing has the potential of becoming an extremely powerful method for defining connections of single neurons to multiple neural circuits in the brain. However, the present use of recombinant strains of PRV expressing different reporters that are driven by different promoters, inserted in different regions of the viral genome, and detected by different methods limits the potential of these recombinant virus strains as useful reagents. We previously constructed and characterized PRV152, a PRV-Bartha derivative that expresses the enhanced green fluorescent protein. The development of a strain isogenic to PRV152 and differing only in the fluorescent reporter would have great utility for dual transsynaptic tracing. In this report, we describe the construction, characterization, and application of strain PRV614, a PRV-Bartha derivative expressing a novel monomeric red fluorescent protein, mRFP1. In contrast to viruses expressing DsRed and DsRed2, PRV614 displayed robust fluorescence both in cell culture and in vivo following transsynaptic transport through autonomic circuits afferent to the eye. Transneuronal retrograde dual PRV labeling has the potential to be a powerful addition to the neuroanatomical tools for investigation of neuronal circuits; the use of strain PRV614 in combination with strain PRV152 will eliminate many of the pitfalls associated with the presently used pairs of PRV recombinants.
منابع مشابه
Fusion of a fluorescent protein to the pUL25 minor capsid protein of pseudorabies virus allows live-cell capsid imaging with negligible impact on infection.
In order to resolve the location and activity of submicroscopic viruses in living cells, viral proteins are often fused to fluorescent proteins (FPs) and visualized by microscopy. In this study, we describe the fusion of FPs to three proteins of pseudorabies virus (PRV) that allowed imaging of capsids in living cells. Included in this study are the first recombinant PRV strains expressing FP-pU...
متن کاملLong-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus
Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection ...
متن کاملPREPARATION AND APPLICATIONS OF FLUORESCENT POLYGLUTARALDEHYDE IMMUNOMICROSPHERES
Aqueous glutaraldehyde has been polymerized under alkaline conditions in the presence of a surfactant to yield microspheres of varied diameters. Microbeads of a nominal 300 nm diameter, made fluorescent via fluoresceinisothiocyanate, were used as a carrier of rabbit anti-human red blood cell antibodies. Specific labeling of the human red blood cells as well as diagnostic use of these fluor...
متن کاملTranssynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling.
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. Th...
متن کاملOptimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 77 18 شماره
صفحات -
تاریخ انتشار 2003